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6.3 Interface Class IpCall 

	<<Interface>>

IpCall

	

	routeReq (callSessionID : in TpSessionID, responseRequested : in TpCallReportRequestSet, targetAddress : in TpAddress, originatingAddress : in TpAddress, originalDestinationAddress : in TpAddress, redirectingAddress : in TpAddress, appInfo : in TpCallAppInfoSet) : TpSessionID

release (callSessionID : in TpSessionID, cause : in TpCallReleaseCause) : void

deassignCall (callSessionID : in TpSessionID) : void

getCallInfoReq (callSessionID : in TpSessionID, callInfoRequested : in TpCallInfoType) : void

setCallChargePlan (callSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : void

setAdviceOfCharge (callSessionID : in TpSessionID, aOCInfo : in TpAoCInfo, tariffSwitch : in TpDuration) : void

getMoreDialledDigitsReq (callSessionID : in TpSessionID, length : in TpInt32) : void

superviseCallReq (callSessionID : in TpSessionID, time : in TpDuration, treatment : in TpCallSuperviseTreatment) : void
continueProcessing (callSessionID : in TpSessionID) : void



Method

routeReq()

This asynchronous method requests routing of the call to the remote party indicated by the targetAddress. 

Note that in case of routeReq() it is recommended to request for 'successful' (e.g. 'answer' event) and  'failure' events at invocation, because those are needed for the application to keep track of the state of the call.

The extra address information such as originatingAddress is optional. If not present (i.e., the plan is set to P_ADDRESS_PLAN_NOT_PRESENT), the information provided in corresponding addresses from the route is used, otherwise the network or gateway provided numbers will be used.

If this method in invoked, and call reports have been requested, yet no IpAppCall interface has been provided, this method shall throw the P_NO_CALLBACK_ADDRESS_SET exception.

Returns callLegSessionID: Specifies the sessionID assigned by the gateway. This is the sessionID of the implicitly created call leg. The same ID will be returned in the routeRes or Err. This allows the application to correlate the request and the result.

 This parameter is only relevant when multiple routeReq() calls are executed in parallel, e.g., in the multi-party call control service. 
This operation continues processing of the call implicitly.
Method

release()

This method requests the release of the call object and associated objects. The call will also be terminated in the network. If the application requested reports to be sent at the end of the call (e.g., by means of getCallInfoReq) these reports will still be sent to the application.

The application should always either release or deassign the call when it is finished with the call, unless a callFaultDetected is received by the application. 

This operation continues processing of the call implicitly.

Method

deassignCall()

This method requests that the relationship between the application and the call and associated objects be de-assigned. It leaves the call in progress, however, it purges the specified call object so that the application has no further control of call processing. If a call is de-assigned that has event reports, call information reports or call Leg information reports requested, then these reports will be disabled and any related information discarded.

The application should always either release or deassign the call when it is finished with the call, unless callFaultDetected is received by the application. 

This operation continues processing of the call implicitly.

6.3.9
Method continueProcessing()

This operation continues processing of the call explicitly. Applications can invoke this operation after call processing was interrupted due to detection of a notification or event the application subscribed its interest in. 

In case the operation is invoked and call processing is not interrupted the exception P_INVALID_NETWORK_STATE will be raised.
Parameters 

callSessionID : in TpSessionID

Specifies the call session ID of the call.
Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE
7.2 State Transition Diagrams for IpCall 

The state transition diagram shows the application view on the Call object for 3GPP. 

 
[image: image1]
Figure : Application view on the IpCall object for 3GPP 

7.2.1 Network Released State

In this state the call has ended and the Gateway collects the possible call information requested with getCallInfoReq() and / or superviseCallReq().  The information will be returned to the application by invoking the methods getCallInfoRes() and / or superviseCallRes() on the application. Also when a call was unsuccessful these methods are used. In case the application has not requested additional call related information immediately a transition is made to  state Finished.
7.2.2 Finished State

In this state the call has ended and no call related information is to be send to the application. The application can only release the call object. Calling the deassignCall() operation has the same effect. Note that the application has to release the object itself as good OO practice requires that when an object was created on behalf of a certain entity, this entity is also responsible for destroying it when the object is no longer needed.
7.2.3 Application Released State

In this state the application has requested to release the Call object and the Gateway collects the possible call information requested with getCallInfoReq() and / or superviseCallReq(). In case the application has not requested additional call related information the Call object is destroyed immediately.
7.2.4 Active State

In this state a call between two parties is being setup or present. Refer to the substates for more details.  The application can request supervision of the call by calling superviseCallReq(). It is also allowed to send Advice of Charge information by calling setAdviceOfCharge() as well as to define the charging by invoking setCallChargePlan.
Call processing is suspended when a network event is met for the call, which was requested to be monitored in the P_CALL_MONITOR_MODE_INTERRUPT. In order to resume of the suspended call processing, the application invokes continueProcessing(),  routeReq(), release() or deassignCall() method.
7.2.5 1 Party in Call State

When the Call is in this state a calling party is present. The application can now request that a connection to a called party be established by calling the method routeReq(). 
In this state the application can also request the gateway for a certain type of charging of the call by calling setCallChargePlan(). The application can also request for charging related information by calling getCallInfoReq(). The setCallChargePlan() and getCallInfoReq() should be issued before requesting a connection to a called party by means of routeReq().
When the calling party abandons the call before the application has invoked the routeReq() operation, the gateway informs the application by invoking callFaultDetected() and also the operation callEnded() will be invoked. When the calling party abandons the call after the application has invoked routeReq() but before the call has actually been established, the gateway informs the application by invoking callEnded().
When the called party answers the call, a transition will be made to the 2 Parties in Call state. In case the call can not be established because the application supplied an invalid address or the connection to the called party was unsuccessful while the application was monitoring for the latter in interrupt mode, the Call object will stay in this state  
In this state user interaction is possible unless there is an outstanding routing request.
7.2.6 2 Parties in Call State

A connection between two parties has been established.
In case the calling party disconnects, the gateway informs the application by invoking callEnded().
When the called party disconnects different situations apply:
1.
the application is monitoring for this event in interrupt mode: a transition is made to the 1 Party in Call state, the application is informed with routeRes with indication that the called party has disconnected and all requested reports are sent to the application. The application now again has control of the call.
2.
the application is monitoring for this event but not in interrupt mode. In this case a transition is made to the Network Released state and the gateway informs the application by invoking the operation routeRes() and callEnded().
3.
the application is not monitoring for this event. In this case the application is informed by the gateway invoking the callEnded() operation and a transition is made to the Network Released state.
In this state user interaction is possible, depending on the underlying network.
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