joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5)
N5-040101
Meeting #26, Atlanta, GA, USA, 16-20 February 2004

	CR-Form-v7

	CHANGE REQUEST

	

	(

	29.198-04-2
	CR
	CRNum
	(

rev
	-
	(

Current version:
	6.0.0
	(

	

	For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

	

	Proposed change affects:
(

	UICC apps(

	
	ME
	
	Radio Access Network
	
	Core Network
	x

	

	Title:
(

	Correction of continueProcessing method for Generic Call Control Service (GCCS)

	
	

	Source:
(

	NTT (Atsushi Iwasaki), Fujitsu (Yumi Suzuki), Incomit (Niklas Modin)

	
	

	Work item code:
(

	OSA1
	
	Date: (

	20/02/2004

	
	
	
	
	

	Category:
(

	A
	
	Release: (

	REL-6

	
	Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
Rel-4
(Release 4)
Rel-5
(Release 5)
Rel-6
(Release 6)

	
	

	Reason for change:
(

	Currently it is not clear in the GCCS specification how the application resumes the call processing after receiving the notification or event of interrupt mode. In addition to that, there are some problems in the following cases:-

· The application specifies the interrupt mode to the answer event of the routeReq() method to transfer the incoming call, and the applicatoin may just want to continue the call processing after some application’s processes at the answer event without calling such as another routeReq() or deassignCall().
However the current specification does not allowed.
· The enableCallNotification() can be set both P_EVENT_GCCS_ADDRESS_COLLECTED_EVENT and P_EVENT_GCCS_ADDRESS_ANALYSED_EVENT as intterupt mode. Even if the application request both events as intterupt mode and the gateway can detect both trigger, the application can only receive one or other of two events since the application have to call routeReq() method to continue the processing.

	
	

	Summary of change:
(

	To solve the above problem, we therefore propose to introduce continueProcessing() method to GCCS as well as MPCCS, and add some text to the Active State of State Transition Diagrams for IpCall for clarification of the way to resume the call processing from the interrupted status.
We believe that there is no difference in the idea about interrupt mode between GCCS and MPCCS. In order to further clearify the usage of continueProcessing, methods that implicitly continues processing, i.e routeReq, releaseCall and deassignCall, should state this.

	
	

	Consequences if
(

not approved:
	Can not support above cases.

	
	

	Clauses affected:
(

	6.3, New 6.3.9, 7.2, 7.2.4

	
	

	
	Y
	N
	
	

	Other specs
(

	
	x
	 Other core specifications
(

	

	affected:
	
	x
	 Test specifications
	

	
	
	x
	 O&M Specifications
	

	
	

	Other comments:
(

	Rel-6 Mirror CR of N5-040098.

How to create CRs using this form:

6.3 Interface Class IpCall

	<<Interface>>

IpCall

	

	routeReq (callSessionID : in TpSessionID, responseRequested : in TpCallReportRequestSet, targetAddress : in TpAddress, originatingAddress : in TpAddress, originalDestinationAddress : in TpAddress, redirectingAddress : in TpAddress, appInfo : in TpCallAppInfoSet) : TpSessionID

release (callSessionID : in TpSessionID, cause : in TpCallReleaseCause) : void

deassignCall (callSessionID : in TpSessionID) : void

getCallInfoReq (callSessionID : in TpSessionID, callInfoRequested : in TpCallInfoType) : void

setCallChargePlan (callSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : void

setAdviceOfCharge (callSessionID : in TpSessionID, aOCInfo : in TpAoCInfo, tariffSwitch : in TpDuration) : void

getMoreDialledDigitsReq (callSessionID : in TpSessionID, length : in TpInt32) : void

superviseCallReq (callSessionID : in TpSessionID, time : in TpDuration, treatment : in TpCallSuperviseTreatment) : void
continueProcessing (callSessionID : in TpSessionID) : void

Method

routeReq()

This asynchronous method requests routing of the call to the remote party indicated by the targetAddress.

Note that in case of routeReq() it is recommended to request for 'successful' (e.g. 'answer' event) and 'failure' events at invocation, because those are needed for the application to keep track of the state of the call.

The extra address information such as originatingAddress is optional. If not present (i.e., the plan is set to P_ADDRESS_PLAN_NOT_PRESENT), the information provided in corresponding addresses from the route is used, otherwise the network or gateway provided numbers will be used.

If this method in invoked, and call reports have been requested, yet no IpAppCall interface has been provided, this method shall throw the P_NO_CALLBACK_ADDRESS_SET exception.

Returns callLegSessionID: Specifies the sessionID assigned by the gateway. This is the sessionID of the implicitly created call leg. The same ID will be returned in the routeRes or Err. This allows the application to correlate the request and the result.

 This parameter is only relevant when multiple routeReq() calls are executed in parallel, e.g., in the multi-party call control service.
This operation continues processing of the call implicitly.
Method

release()

This method requests the release of the call object and associated objects. The call will also be terminated in the network. If the application requested reports to be sent at the end of the call (e.g., by means of getCallInfoReq) these reports will still be sent to the application.

The application should always either release or deassign the call when it is finished with the call, unless a callFaultDetected is received by the application.

This operation continues processing of the call implicitly.

Method

deassignCall()

This method requests that the relationship between the application and the call and associated objects be de-assigned. It leaves the call in progress, however, it purges the specified call object so that the application has no further control of call processing. If a call is de-assigned that has event reports, call information reports or call Leg information reports requested, then these reports will be disabled and any related information discarded.

The application should always either release or deassign the call when it is finished with the call, unless callFaultDetected is received by the application.

This operation continues processing of the call implicitly.

6.3.9
Method continueProcessing()

This operation continues processing of the call explicitly. Applications can invoke this operation after call processing was interrupted due to detection of a notification or event the application subscribed its interest in.

In case the operation is invoked and call processing is not interrupted the exception P_INVALID_NETWORK_STATE will be raised.
Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE
7.2 State Transition Diagrams for IpCall

The state transition diagram shows the application view on the Call object for 3GPP.

[image: image1]
Figure : Application view on the IpCall object for 3GPP

7.2.1 Network Released State

In this state the call has ended and the Gateway collects the possible call information requested with getCallInfoReq() and / or superviseCallReq(). The information will be returned to the application by invoking the methods getCallInfoRes() and / or superviseCallRes() on the application. Also when a call was unsuccessful these methods are used. In case the application has not requested additional call related information immediately a transition is made to state Finished.
7.2.2 Finished State

In this state the call has ended and no call related information is to be send to the application. The application can only release the call object. Calling the deassignCall() operation has the same effect. Note that the application has to release the object itself as good OO practice requires that when an object was created on behalf of a certain entity, this entity is also responsible for destroying it when the object is no longer needed.
7.2.3 Application Released State

In this state the application has requested to release the Call object and the Gateway collects the possible call information requested with getCallInfoReq() and / or superviseCallReq(). In case the application has not requested additional call related information the Call object is destroyed immediately.
7.2.4 Active State

In this state a call between two parties is being setup or present. Refer to the substates for more details. The application can request supervision of the call by calling superviseCallReq(). It is also allowed to send Advice of Charge information by calling setAdviceOfCharge() as well as to define the charging by invoking setCallChargePlan.
Call processing is suspended when a network event is met for the call, which was requested to be monitored in the P_CALL_MONITOR_MODE_INTERRUPT. In order to resume of the suspended call processing, the application invokes continueProcessing(), routeReq(), release() or deassignCall() method.
7.2.5 1 Party in Call State

When the Call is in this state a calling party is present. The application can now request that a connection to a called party be established by calling the method routeReq().
In this state the application can also request the gateway for a certain type of charging of the call by calling setCallChargePlan(). The application can also request for charging related information by calling getCallInfoReq(). The setCallChargePlan() and getCallInfoReq() should be issued before requesting a connection to a called party by means of routeReq().
When the calling party abandons the call before the application has invoked the routeReq() operation, the gateway informs the application by invoking callFaultDetected() and also the operation callEnded() will be invoked. When the calling party abandons the call after the application has invoked routeReq() but before the call has actually been established, the gateway informs the application by invoking callEnded().
When the called party answers the call, a transition will be made to the 2 Parties in Call state. In case the call can not be established because the application supplied an invalid address or the connection to the called party was unsuccessful while the application was monitoring for the latter in interrupt mode, the Call object will stay in this state
In this state user interaction is possible unless there is an outstanding routing request.
7.2.6 2 Parties in Call State

A connection between two parties has been established.
In case the calling party disconnects, the gateway informs the application by invoking callEnded().
When the called party disconnects different situations apply:
1.
the application is monitoring for this event in interrupt mode: a transition is made to the 1 Party in Call state, the application is informed with routeRes with indication that the called party has disconnected and all requested reports are sent to the application. The application now again has control of the call.
2.
the application is monitoring for this event but not in interrupt mode. In this case a transition is made to the Network Released state and the gateway informs the application by invoking the operation routeRes() and callEnded().
3.
the application is not monitoring for this event. In this case the application is informed by the gateway invoking the callEnded() operation and a transition is made to the Network Released state.
In this state user interaction is possible, depending on the underlying network.
setCallChargePlan

IpAppCallControlManager.callEventNotify

routeReq

superviseCallRes

interrupt] ^routeRes, getCallInfoRes,

"disconnect from called party"[monitor mode =

"routing aborted or invalid address" ^routeErr

^routeRes

unsuccessful"[monitor mode = interrupt]

"connection to called party

"answer"

getCallInfoReq

"network event received for which was monitored[routeRes]

"call supervision event"^superviseCallRes

superviseCallErr

"fault in retrieval of information" ^getCallInfoErr,

release

superviseCallRes

"requested information ready" ^getCallInfoRes,

superviseCallReq]

[no reports requested with getCallInfoReq AND

deassignCall

superviseCallErr

"fault in retrieval of information" ^getCallInfoErr,

superviseCallReq]

getCallInfoReq AND

[no reports requested with

^getCallInfoRes, superviseCallRes

"requested information ready"

"call ends: calling party disconnects"[no monitor for this event] ^callEnded

"fault detected"[fault cannot be communicated with network event] ^callFaultDetected

"call ends : called party disconnects"[monitor for this event] ^callEnded, routeRes(party disconnect)

"call ends: calling party abandoned" ^callEnded

"call ends : calling party disconnects" ^callEnded

release

deassignCall

setAdviceOfCharge

superviseCallReq

Call

1 Party in

Call

2 Parties in

Call

1 Party in

Call

2 Parties in

Active

an abnormal termination

on the IpAppCallControlManager as this is

callEnded(), callAborted() shall be invoked

IpAppCall is available on which to invoke

(Recovery on timer expiry). In case when no

be invoked with a release cause of 102

Upon expiry of this timer, callEnded() should

resources.

should prevent the object from occupuing

In state No Parties and Finished, a timer

timeout ^callFaultDetected("timeout on release")

deassignCall

release

Released

Application

Finished

Network Released

continueProcessing

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team. It consists of at least three digits, padded with leading zeros if necessary.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��� � HYPERLINK "http://www.3gpp.org/specs/specs.htm" ��http://www.3gpp.org/specs/specs.htm�.

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� SIM / USIM / ISIM applications.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line. Do not use redundant information such as "Change Request number xxx to 3GPP TS xx.xxx".

�PAGE \# "'Page: '#'�'" �� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/� .�The list is also included in a MS Excel file included in the zip file containing the CR cover sheet template.

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised. Format to be interpretable by English version of MS Windows ® applications, e.g. 19/02/2002.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report � HYPERLINK "http://www.3gpp.org/ftp/Specs/archive/21_series/21.900/" ��21.900� "TSG working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. correction).

�PAGE \# "'Page: '#'�'" �� Enter the number of each clause which contains changes.

�PAGE \# "'Page: '#'�'" �� Tick "yes" box if any other specifications are affected by this change. Else tick "no". You MUST fill in one or the other.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

